Discovery of bacterial fatty acid synthase type II inhibitors using a novel cellular bioluminescent reporter assay.
نویسندگان
چکیده
Novel, cellular, gain-of-signal, bioluminescent reporter assays for fatty acid synthesis type II (FASII) inhibitors were constructed in an efflux-deficient strain of Pseudomonas aeruginosa and based on the discovery that FASII genes in P. aeruginosa are coordinately upregulated in response to pathway disruption. A screen of 115,000 compounds identified a series of sulfonamidobenzamide (SABA) analogs, which generated strong luminescent signals in two FASII reporter strains but not in four control reporter strains designed to respond to inhibitors of pathways other than FASII. The SABA analogs selectively inhibited lipid biosynthesis in P. aeruginosa and exhibited minimal cytotoxicity to mammalian cells (50% cytotoxic concentration [CC50] ≥ 80 μM). The most potent SABA analogs had MICs of 0.5 to 7.0 μM (0.2 to 3.0 μg/ml) against an efflux-deficient Escherichia coli (ΔtolC) strain but had no detectable MIC against efflux-proficient E. coli or against P. aeruginosa (efflux deficient or proficient). Genetic, molecular genetic, and biochemical studies revealed that SABA analogs target the enzyme (AccC) catalyzing the biotin carboxylase half-reaction of the acetyl coenzyme A (acetyl-CoA) carboxylase step in the initiation phase of FASII in E. coli and P. aeruginosa. These results validate the capability and the sensitivity of this novel bioluminescent reporter screen to identify inhibitors of E. coli and P. aeruginosa FASII.
منابع مشابه
Novel inhibitors of the condensing enzymes of the type II fatty acid synthase of pea (Pisum sativum).
The type II fatty acid synthases (FASs) of higher plants (and Escherichia coli) contain three condensing enzymes called beta-ketoacyl-ACP synthases (KAS), where ACP is acyl-carrier-protein. We have used novel derivatives of the antibiotic thiolactomycin to inhibit these enzymes. Overall de novo fatty acid biosynthesis was measured using [1-(14)C]acetate substrate and chloroplast preparations fr...
متن کاملA novel medium-throughput biological assay system for HTLV-1 infectivity and drug discovery
Objective(s): Here, a reporter cell line containing two reporter vectors were developed, in order to monitor the Human T-Lymphotropic Virus type1(HTLV-1) infectivity and the cell viability simultaneously. Materials and Methods: The reporter cell line was constructed by stably transfected baby hamster's kidney cell line (BHK-21), with the genomes expressing two different reporters in separate pl...
متن کاملDiscovery of FabH/FabF inhibitors from natural products.
Condensing enzymes are essential in type II fatty acid synthesis and are promising targets for antibacterial drug discovery. Recently, a new approach using a xylose-inducible plasmid to express antisense RNA in Staphylococcus aureus has been described; however, the actual mechanism was not delineated. In this paper, the mechanism of decreased target protein production by expression of antisense...
متن کاملStructural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis
Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (Fab...
متن کاملEvaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase.
Epigallocatechin gallate (EGCG) is the major component of green tea extracts and possesses antibacterial, antiviral, and antitumor activity. Our study focused on validating the inhibition of the bacterial type II fatty acid synthesis system as a mechanism for the antibacterial effects of EGCG and related plant polyphenols. EGCG and the related tea catechins potently inhibited both the FabG and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 59 9 شماره
صفحات -
تاریخ انتشار 2015